TE Variation.com

Dr. Wayne Taylor - Taylor Enterprises, Inc.
Applied Statistics
for Engineers and Quality in the FDA Regulated Industries


Search variation.com

Enter keywords: 

Exact Match Search

 

Site Map

Products (HOME)

Books

Software

Courses

Consulting


Expertise

Acceptance Sampling

Process Validation

CAPAs and Trending of Quality Data

FMEA

Measurement Systems Analysis

Spec Setting, Tolerance Analysis and Robust Design

General Statistics

Statistical Process Control

Design of Experiments

Six Sigma


Store  

What's New

Technical Library

FAQ


  Contact Info

Chairman
Dr. Wayne A. Taylor   linkedin
President
Ann Taylor
Telephone
1 (847) 367-1032
FAX
1 (847) 367-1037
Postal address
5510 Fairmont Rd.
Libertyville, IL 60048
USA
Electronic mail
info@variation.com
Web
www.variation.com

 

Subscribe to our Web Site

By entering your e-mail address and clicking the Subscribe button, you will automatically be added to our mailing list.  You will receive an e-mail when new versions of our software or books are available as well as other significant announcements.  (privacy policy).

E-mail address to send notifications to:

    

       Statistical Procedures for the Medical Device Industry    Statistical Procedures for the Medical Device Industry   

STAT-04: Statistical Techniques for
Design Verification

Purpose

Design verification studies are confirmatory studies to ensure the product design performs as intended.  They make pass/fail decisions as to whether the product's design outputs (specifications, drawings) ensure each design input requirement (requirements definition document) is met or not.  The procedure determines which design requirements require statistical methods to verify them and then helps to select the best method.

Note:  It is the goal of Process Validation to show the process is capable of meeting the specifications for the design outputs.  It is the goal of design verification to show that the entire specification of the design output result is product that works (meets the design inputs).

                 Design Output

Appendices

      None

Highlights

    Sometimes Statistical Methods are not Required - When no variation

  • Rules for deciding if testing 1 unit is sufficient.  This is for requirements where there is no variation in performing the test.  One example is logic testing of software where each test is performed once because the same result will occur each time the test is performed.  In software validation the focus is identifying all the logic paths and testing each one once as part of a test script.  This option and approach also applies to other features such as color and  presence of a feature.

   There are  Several Alternatives to Sampling Plans - When there is variation

  • Demonstration by Analysis.  Examples of Demonstration by Analysis include tolerance analysis, finite element analysis and models developed by designed experiments.  Testing is sometimes, but not always required, to demonstrate the model is predictive.  For example, a confirmation run at the optimal settings following a designed experiment.  The model is then used to demonstrate that as the design outputs varying over the design space, the product performance meet the design inputs.
  • Worst-case testing allowing 1-5 units to be tested at each worst-case setting.  Worst-case conditions are the settings for the design outputs that cause the worst-case performance of the design inputs. When worst-case conditions can be identified and units can be precisely built at or modified to these worst-case conditions, a single unit may be tested at each of the worst-case conditions. This ensures the design functions over the entire specification range.  This approach is generally preferable to testing a larger number of units toward the middle of the specification range.  When units cannot be precisely built at or modified to these worst-case conditions, multiple units may have to be built and tested.

   Instructions for Selecting Sampling Plans 

  • Sampling plans are selected based on the confidence statement that can be made, if they pass.  For example, 95% confidence more than 99% of the units meet the requirement (denoted 95%/99%).  When a sampling plan is required, instructions are provided for linking the confidence statement to risk using a table like the one below.

Product Risk/Harm Level

Design Verification

Reduced Level
(Stress Tests)

High

95%/99%

95%/95%

Moderate

95%/97%

95%/90%

Low

95%/90%

95%/80%

  • For each confidence statement, numerous sampling plans exist.  For example the following table from STAT-12 contains several attribute single and double sampling plans that all make the same 95%/99% confidence statement.

Type

Parameters

AQL

Single

n = 299, a = 0

0.017%

Double

n1 = 320, a1 = 0, r1 = 2, n2 = 256, a2 = 1

0.069%

Single

n = 473, a = 1

0.075%

Double

n1 = 327, a1 = 0, r1 = 2, n2 = 385, a2 = 2

0.094%

Single

n = 628, a = 2

0.13%

Double

n1 = 327, a1 = 0, r1 = 3, n2 = 582, a2 = 3

0.15%

Single

n = 773, a = 3

0.18%

Double

n1 = 330, a1 = 0, r1 = 3, n2 = 719, a2 = 4

0.18%

 

   Strategies for Reducing the Sample Size - For when a sampling plan is used 

  • Variables data - having a measurement instead of attribute pass/fail results, allows variable sampling plans to be used.  They require as few as 15 samples in contrast to the minimum of 299 above.

  • Stress testing – testing a small number of units using a method that induces more failures than expected in the field.  Note the stress test column in the table above.   This can include design margin as described in Appendix A of STAT-03.

  • Multiple tests on the same unit.  A sample size is 30 means 30 tests are required.  Under certain circumstance if may be possible to test 3 units 10 times each.


Copyright 1997-2017 Taylor Enterprises, Inc.
Last modified: September 08, 2017