TE Taylor Enterprises, Inc.
www.variation.com
Quality and Statistics
Books, Software, Training and Consulting


Search variation.com

Enter keywords: 

Exact Match Search

 

Site Map

Products (HOME)

Books

Software

Courses

Consulting


Expertise

Acceptance Sampling

Process Validation

CAPAs and Trending of Quality Data

FMEA

Measurement Systems Analysis

Spec Setting, Tolerance Analysis and Robust Design

General Statistics

Statistical Process Control

Design of Experiments

Six Sigma


Store  

What's New

Technical Library

FAQ


  Contact Info

Chairman
Dr. Wayne A. Taylor   linkedin
President
Ann Taylor
Telephone
1 (847) 367-1032
FAX
1 (847) 367-1037
Postal address
5510 Fairmont Rd.
Libertyville, IL 60048
USA
Electronic mail
info@variation.com
Web
www.variation.com

 

Subscribe to our Web Site

By entering your e-mail address and clicking the Subscribe button, you will automatically be added to our mailing list.  You will receive an e-mail when new versions of our software or books are available as well as other significant announcements.  (privacy policy).

E-mail address to send notifications to:

    

       Statistical Procedures for the Medical Device Industry    Statistical Procedures for the Medical Device Industry   

STAT-18: Statistical Techniques for Normality Testing and Transformations

Purpose

To provide guidance on normality testing to ensure the assumption of normality is adequately met when using variables sampling plans and related procedures. Related procedures include normal tolerance intervals, variables confidence limits for the proportion, and confidence statements for Ppk. Included are procedures to handle situations when the normality test fails and procedures for the detection and handling of outliers.

Appendices

  1. General Normality Tests
  2.  Effects of Ties on General Normality Tests
  3.  Skewness–Kurtosis Specific Normality Test
  4.  Transforming Data
  5.  Sublotting Data using ANOVA
  6.  Sublotting Data using Kruskal–Wallis Test
  7.  Investigating Outliers
  8.  Invalidating an Outlier Value by Repeated Retesting
  9.  High Capability Acceptance Criteria

Highlights

  • Banding Pattern Due to Ties:  If you see a normal probability plot that looks like that below, the bands are caused by the same value being repeated multiple times (ties).  When this happens both the Anderson-Darling and Shapiro-Wilk test will falsely reject normal data (p-value = 0.016).  The histogram of the data certainly looks normal.  Appendix B describes this problem.  The solution is to use the SK All (D’Agostino–Pearson) test, which is robust to ties in the data.  The SK All test is described in Appendix A and available in the validated spreadsheet STAT-18 - Skewness-Kurtosis Normality Tests accompanying the book.

         Bandinp Pattern due to ties in the dataHistogram of Banding Pattern data

 

 

  • Bounded by the Normal Distribution:  Not all departures from normality invalidate the use of a variables sampling plan.  The data below fails the general normality tests due to short tails (Anderson-Darling p-value 0.0001).  The data has good capability and seems to be bounded by the normal distribution.  The only thing keeping it from passing is the failed normality test.  The SK Specific test has been designed for this purpose.  It asks the question "Can a variables sampling plan be used?" rather than "Is the data normal?"  It accepts certain departures from normality that do not invalidate the confidence statement associated with the variables sampling plan.  The SK Specific test passes this data allowing the study to pass  The SK Specific test is described in Appendix C and available in the validated spreadsheet STAT-18 - Skewness-Kurtosis Normality Tests accompanying the book.

         Short Tails - SK Specific Test

 

  • High Capability Data:  When data has high capability, a normality test may not be required.  Suppose the desired confidence statement is 95%/99% and the plan n=50, Ppk=0.96 was selected.  The data below fails the normality test.  However, since the estimated Ppk is more than 1.84 times the acceptance criteria of 0.96 and the skewness is greater than -2, the high capability acceptance criteria are meet and no normality test is required.  The high capability acceptance criteria are described in Appendix I.

         High Capability Nonnormal Data

 

  • Flowchart:  The procedure provides numerous options for handling nonormal data including transforming (Appendix D), sublotting (Appendices E, F), and invalidating outliers (Appendices G, H).  It provides a step-by-step flowchart for deciding which approach to use when.  The flowchart and instructions are important in avoiding the abuse of the these methods to prevent "analysis until it passes".

Copyright 1997-2017 Taylor Enterprises, Inc.
Last modified: September 08, 2017