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A Pattern Test for Distinguishing Between  
Autoregressive and Mean-Shift Data 

 
WAYNE A. TAYLOR 

Baxter Healthcare Corporation, Round Lake, IL 60073 
 

Statistical methods such as control charts and change-point analysis are commonly used 
to determine whether the mean has shifted.  Such methods assume independent errors 
around a possibly changing mean.  When such techniques are applied to autoregressive 
data, erroneous conclusions can result.  However, shifts of the mean create 
autocorrelation between the observations making it difficult to distinguish mean-shift 
data from autoregressive data.  A pattern test has been devised that can reliably 
distinguish between these two important cases. 

 
Introduction 
 
Look at Figures 1-3.  Which two sets of data are most similar in structure? 
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Figure 1:  Mean-Shift Model 
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Figure 2:  First Order Autoregressive Model - Positive Correlation 
                                                           
 Dr. Taylor is Director Quality Technologies and Head of Baxter’s Six Sigma Program.  He is a Fellow  of 
ASQ.  His email address is wayne@variation.com. 
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Figure 3:  First Order Autoregressive Model - Negative Correlation 
 
Would you be surprised to find out it is the plots in Figures 2 and 3?  Both were 
generated using a first order autoregressive model.  The plot in Figure 1 was generated 
using a different model, called the mean-shift model.  When analyzing data collected 
over time, it is important to be able to distinguish between these two important cases.  
Visual inspection of such data is unreliable.  A pattern test has been developed which can 
reliably distinguish between these two models. 
 
 
The Mean-Shift Model 
 
Statistical methods such as control charts and change-point analysis assume a series of 
independent observations collected over time.  At one or more points in time the mean 
may shift.  Let X1, X2, ... represent the data in time order.  The mean-shift model can be 
written as 
 

 Xi = µi + εi 
 

where µi is the average at time i.  Generally µi = µi-1 except for a small number of values 
of i called the change-points.  εi is the random error associated with the i-th value.  It is 
assumed that the εi are independent and identically distributed with means of zero.  Other 
assumptions including normality may also be made by some of these statistical methods 
but are not required for the proposed pattern test. 
 
The data shown in Figure 1 was generated using the following model: 
 

 εi ∼ N(0,1) and independent 
 µ1, µ21, µ41, µ61, µ81 ∼ N(10,1) and independent 
 For all other i, µi = µi-1 
 

N(µ,σ) means normally distributed with mean µ and standard deviation σ.  This model 
could result from a process where the mean shifts as a result of periodic material changes.  
It could also result from a process subject to both setup and within setup variation.  In 
other cases, the mean-shifts could occur at random times.  The proposed pattern test 
works for any of these situations. 
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The First Order Autoregressive Model 
 
The data shown in Figures 2 and 3 were generated using the first order autoregressive 
model: 
 
 εi ∼ N(0,1) and independent 
 ri = φ ri-1 + εi 
 r0 = 0 
 Xi = 10 + ri 
 
φ is a constant between -1 and 1.  The above model results in a correlation between 
successive values of: 
 
 Corr{Xi, Xi-1} = φ 
 
Values of φ=0.7 and φ=-0.7 were used respectively in Figures 2 and 3.  When φ=0, the 
autoregressive model reduces to what is called the white noise model where Xi ∼ N(10,1) 
and independent.  This is also a special case of the mean-shift model with no shifts. 
 
When checking for an autoregressive model, one frequently calculates the 
autocorrelations and displays them in the form of a correologram.  However, this is only 
useful for distinguishing between an autoregressive model and white noise.  The mean-
shift model also results in autocorrelations between the values.  In Figure 1 the 
correlation between consecutive values is 0.43.  Looking at the autocorrelations will not 
allow one to distinguish between these two models. 
 
 
The Pattern Test 
 
Figure 4 shows the six possible patterns that can result from plotting three consecutive 
points when there are no ties.  Pattern 1 is called the double up pattern and Pattern 6 is 
called the double down pattern.  The other 4 patterns will be referred to as reversal 
patterns.  For the autoregressive model, the double up and double down patterns are most 
common when there is a positive autocorrelation as in Figure 2.  The reversal patterns are 
most common when there is a negative correlation as in Figure 3. 
 
When the means of the 3 points are the same, all six patterns are equally likely.  In this 
case, the double up and double down patterns should occur 1/3 the time and the reversal 
patterns should occur 2/3 of the time.  The pattern test involves counting the number of 
times the double up/down patterns occur.  This count is slightly biased when the mean 
shifts or there is an outlier.  However the bias is small and easily compensated for making 
this count useful for distinguishing between mean-shift and autoregressive data.  If this 
count is significantly greater than a third the number of values, the data is autoregressive 
with positive correlation.  If this count is significantly less than a third, the data is 
autoregressive with negative correlation.  Otherwise the mean-shift model fits the 
observed data. 
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Figure 4:  Six Patterns for Three Consecutive Points 
 
Table 1 gives critical values for S for a 2-sided test with α=0.05 for n between 10 and 
200.  If S ≤ slower, the data is autocorrelated with negative correlation.  If S ≥ supper, the 
data is autocorrelated with positive correlation.  Otherwise, the data is consistent with the 
mean-shift model.  These critical values and the approximations given below are all 
based on the assumption that the number of shifts and outliers is less than 1 per 20 data 
points.  This assumption should rarely restrict the use of this procedure. 
 
Formulas 1 and 2 can also be used to calculate significance levels.  If αlower ≤ 0.025, the 
data is autocorrelated with negative correlation.  If αupper ≤ 0.025, the data is 
autocorrelated with positive correlation.  Otherwise, any correlation in the data is the 
result of mean shifts. 
 
 ( )lowerlowerplower b,a1

lower
Ι−≈α  (1) 

 

  where   
60n30
31n14plower −

−
= ,   1Sa lower +=    and   S

p3
2nb

lower
lower −

−
=  

 
 ( )upperupperpupper b,a

upper
Ι≈α  (2) 

 

  where   
600n315
310n147pupper −

−
= ,   Sa lower =    and   1S

p60
40n21b

upper
lower +−

−
=  

 
Ip(a,b) is the incomplete beta function.  The derivation of these formulas is given in 
Appendix A.  They are within 2% of the true value for 0.01≤α≤0.1 and n≥10.  Formulas 
3 and 4 give a second less accurate approximation that can be used when n≥100. 
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Table 1:  Two-Sided Critical Values for S = Number of Double Up/Down Patterns (α=0.05) 
 

n slower supper  n slower supper  n slower supper  n slower supper 
10 0 6  58 12 26  106 26 46  154 40 64 
11 0 6  59 12 27  107 26 46  155 40 64 
12 0 7  60 12 27  108 26 46  156 41 65 
13 0 7  61 13 28  109 27 47  157 41 65 
14 1 8  62 13 28  110 27 47  158 41 65 
15 1 8  63 13 28  111 27 47  159 41 66 
16 1 9  64 13 29  112 27 48  160 42 67 
17 1 9  65 14 30  113 27 48  161 42 67 
18 1 9  66 14 30  114 28 49  162 42 67 
19 2 10  67 14 30  115 28 49  163 43 68 
20 2 11  68 15 31  116 28 49  164 43 68 
21 2 11  69 15 31  117 29 50  165 43 68 
22 2 11  70 15 31  118 29 50  166 44 69 
23 3 12  71 16 32  119 29 50  167 44 69 
24 3 13  72 16 32  120 30 51  168 44 70 
25 3 13  73 16 32  121 30 52  169 44 70 
26 3 13  74 16 33  122 30 52  170 45 71 
27 4 14  75 16 33  123 30 52  171 45 71 
28 4 14  76 17 34  124 31 53  172 45 71 
29 4 14  77 17 34  125 31 53  173 46 72 
30 4 15  78 17 34  126 31 53  174 46 72 
31 4 15  79 18 35  127 32 54  175 46 72 
32 5 16  80 18 35  128 32 54  176 46 72 
33 5 16  81 18 36  129 32 54  177 47 73 
34 5 16  82 18 36  130 33 55  178 47 73 
35 6 17  83 19 37  131 33 55  179 47 73 
36 6 17  84 19 37  132 33 55  180 47 74 
37 6 18  85 19 37  133 34 56  181 48 75 
38 6 18  86 20 38  134 34 57  182 48 75 
39 7 19  87 20 38  135 34 57  183 48 75 
40 7 19  88 20 38  136 34 57  184 49 76 
41 7 20  89 21 39  137 35 58  185 49 76 
42 7 20  90 21 39  138 35 58  186 49 76 
43 8 21  91 21 40  139 35 58  187 50 77 
44 8 21  92 21 40  140 36 59  188 50 77 
45 8 21  93 22 41  141 36 59  189 50 77 
46 9 22  94 22 41  142 36 60  190 51 78 
47 9 22  95 22 41  143 37 60  191 51 78 
48 9 22  96 23 42  144 37 61  192 51 78 
49 9 23  97 23 42  145 37 61  193 52 79 
50 9 23  98 23 42  146 37 61  194 52 80 
51 10 24  99 24 43  147 38 62  195 52 80 
52 10 24  100 24 44  148 38 62  196 52 80 
53 10 24  101 24 44  149 38 62  197 53 81 
54 11 25  102 24 44  150 39 63  198 53 81 
55 11 25  102 25 45  151 39 63  199 53 81 
56 11 25  104 25 45  152 39 63  200 54 82 
57 12 26  105 25 45  153 40 64     

 

Note:  n = sample size.  If S ≤ slower, the data is autocorrelated with negative correlation.  If S ≥ supper, the data 
is autocorrelated with positive correlation.  Otherwise, the data is consistent with the mean-shift model. 
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Applications of the Pattern Test 
 
Table 2 shows the results of applying the pattern test to the three sets of generated data in 
Figures 1-3 plus the three real sets of data shown in Figures 5-7.  In Figures 1-3, n=100 
resulting in critical values slower=24 and supper=44.  For the mean-shift data in Figure 1, 
S=38 which falls between the two critical values.  This is consistent with a mean-shift 
model.  For the Figure 2 autoregressive data with positive correlation, S=46.  This 
exceeds the upper critical value proving the data is not consistent with a mean-shift 
model.  For the Figure 3 autoregressive data with negative correlation, S=19.  This is 
below the lower critical value again proving the data is not consistent with a mean-shift 
model.  The α values from Equations 1-4 support these same conclusions.  Also shown 
are the true α values obtained through simulation.  All four approximations are accurate 
to three digits when n=100. 
 

Table 2:  Analysis of Example Data Sets 
 

Fig. Model n S slower supper αlower 
true 

αlower 
(Eq. 1) 

αlower 
(Eq. 3) 

αupper 
true 

αupper 
(Eq. 2) 

αupper 
(Eq. 4) 

1 Mean-Shift 100 38 24 44 0.9187 0.9185 0.9187 0.2300 0.2296 0.2298 

2 Autoregressive 
- Positive 

100 46 24 44 0.9995 0.9996 0.9995 0.0047 0.0045 0.0046 

3 Autoregressive 
- Negative 

100 19 24 44 0.0007 0.0007 0.0008 0.9999 0.9999 0.9999 

5 Number 
Sunspots 

50 38 9 23 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

6 Batch Yields 70 9 15 31 0.0001 0.0000 0.0000 1.0000 1.0000 1.0000 

7 Part Strength 52 19 10 24 0.8294 0.8286 0.8286 0.3491 0.3499 0.3509 

 
 
Figure 5 shows the number of sunspots for a 50 year period of time.  This data is Series E 
from Box and Jenkins (1976).  The number of double up/down patterns is S=38.  This 
exceeds the upper critical value supper=23 indicating the data is autoregressive with 
positive correlation.  The α values from Equations 1-4 support this same conclusion. 
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Figure 5:  Wölfer Sunspot Data 
 
Figure 6 shows the yields from 70 consecutive batches of a chemical process.  This data 
is Series F from Box and Jenkins (1976).  The number of double up/down patterns is 
S=9.  This is below the lower critical value slower=15 indicating the data is autoregressive 
with negative correlation.  The α values from Equations 1-4 support this same 
conclusion. 
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Figure 6:  Batch Yields 
 
Figure 7 shows part strength readings taken once an hour over 52 consecutive hours.  The 
number of double up/down patterns is S=19.  This is between the lower critical value 
slower=10 and the upper critical value supperr=24 indicating the data is consistent with the 
mean-shift model.  The α values from Equations 1-4 support this same conclusion. 
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Figure 7:  Part Strength 
 
 
Handling Ties 
 
When ties are possible, two new patterns can occur: the single tie and the double tie.  In 
this case, let Pi be defined in terms of Xi-2, Xi-1, Xi as follows: 
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Further, let S be defined as: 
 

 ∑
=

=
n

3i
iPS  

 
When Xi-2, Xi-1, Xi are identically distributed, E{Pi} = 1/3.  Again a test for 
autoregression can be constructed based on S averaging above or below 1/3 the number 
of patterns.  If the number of ties is small, Table 1 and Equations 1-4 may still be used.  
But if ties are more common, Table 1 and Equations 1-4 can no longer be used because 
the ties reduce the variation of S.  Instead Equations 5-8 should be used: 
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Estimates of Var{Pi}, Cov{Pi,Pi+1} and Cov{Pi,Pi+2} can be obtained from the data.  A 
special case with numerous ties is pass/fail data.  In this case: 
 

 




−
=

)p1(yprobabilitwith0
pyprobabilitwith1

Xi  

 
Then: 
 

 











+=
−+=

−+−+−+−=
=

=

p)-p)p(1-(1p)p-p(1yprobabilitwith0
)p1(pyprobabilitwith

p)p1()p1(pp)p1()p1(pyprobabilitwith
0yprobabilitwith1

P 33
3

1

2222
2

1

i  

 
This gives: 
 
 { } [ ] [ ] 3

13
3

12233
3

1
i )p1(pp)p1(3)p1(p3)p1(pPE =−+=−+−+−+=  

 
For pass/fail data, the variance and covariances of Pi are: 
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For pass/fail data, an estimate of p can be obtained from the data and substituted into 
Equations 9-11 to estimate Var{Pi}, Cov{Pi,Pi+1} and Cov{Pi,Pi+2}.  These estimates can 
then be plugged into Equations 5-8 to obtain approximate α levels. 
 
 
Other Applications of Pi 
 
An example of a data set with ties is shown in Figure 8.  197 chemical concentrations are 
shown.  This data is Series A from Box and Jenkins (1976). 
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Figure 8:  Chemical Concentration Data 
 
From this data P3, ..., P197 can be calculated.  The Pi values are time ordered data that 
reacts to changes in the autoregressive behavior of the data.  A CUSUM chart of the Pi 
values is shown in Figure 9.  The sudden change in direction in the CUSUM chart 
indicates a sudden change in the autoregressive behavior of this data. 
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Figure 9:  CUSUM Chart of Pi for Chemical Concentration Data 

 
A change-point analysis was then performed on the Pi using Taylor (2000).  This 
software performs a bootstrap analysis on the CUSUM chart to obtain confidence levels 
and confidence intervals for the change.  The results of this analysis are shown in Figure 
10.  It verifies a change occurred with 98% confidence.  The change is estimated to have 
occurred just prior to point 145.  With 95% confidence it occurred between points 83 and 
179. 
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Table of Significant Changes for Pi

Confidence Level = 90%, Confidence Interval = 95%, Bootstraps = 1000, Sampling Without Replacement

Row Confidence Interval Conf. Level From To Level

145 (83, 179) 98% 0.32629 0.54088 1  
 

Figure 10:  Results of Change-Point Analysis of Pi for Chemical Concentration Data 
 
The average Pi before the change is 0.326, which is close to 1/3, indicating a lack of 
autoregressive behavior.  The average Pi following the change is 0.542 indicating 
autoregression with a positive correlation.  Separate tests for autoregression were 
performed on points 1-144 and points 145-197.  The results are shown in Table 3.  These 
tests confirm that following the change, the data is autoregressive with positive 
correlation, while before the change the data is consistent with the mean-shift model. 
 
 

Table 3:  Pattern Test for Chemical Concentration Data 
 

Points n S αlower 
(Eq. 5) 

αlower 
(Eq. 7) 

αupper 
(Eq. 6) 

αupper 
(Eq. 8) 

1-144 144 47.33 0.4358 0.4442 0.8624 0.8631 

145-197 53 26.67 1.0000 1.0000 0.0000 0.0000 

 
 
Conclusion 
 
The pattern test has proven to be useful for distinguishing between two very important 
models: the mean-shift model and the first order autoregressive model.  The pattern test 
can be used to detect a violation of the assumption of independent errors when control 
charting data and performing a change-point analysis.  The series Pi can also be used to 
detect changes in the autoregressive behavior of the data.  It provides a useful new tool 
for helping to analyze complicated time series data. 
 
 
Appendix A 
 
The distribution of the test statistic S will be derived assuming no mean shifts or ties.  
Assume that a series of n data points X1, X2, ..., Xn has been collected in time order.  Let 
Pi be an indicator function of whether the double up/down pattern occurred for points Xi-

2, Xi-1, Xi.  Further let: 
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The average and variance of S are: 
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Assuming no ties or mean shifts, the Pi are identically distributed with: 
 
 E{Pi} = 1/3 
 Var{Pi} = 2/9 
 Cov{Pi,Pi+1}= -1/36 
 Cov{Pi,Pi+2} = 1/180 
 
All other covariances are zero.  The above moments were calculated by generating the 
5!=120 possible patterns for 5 points.  Substituting the moments of Pi into Equations 12 
and 13 gives the following moments for S: 
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When the mean shifts between time i-1 and i, the following values change: 
 
 E{Pi} = E{Pi+1} = 1/2 
 Var{Pi} = Var{Pi+1} = 1/4 
 Cov{Pi-1,Pi}= 0 
 Cov{Pi,Pi+1}= 0 
 Cov{Pi+1,Pi+2}= 0 
 Cov{Pi-2,Pi}= 0 
 Cov{Pi-1,Pi+1}= 0 
 Cov{Pi,Pi+2}= 0 
 Cov{Pi+1,Pi+3}= 0 
 
All other values are as before.  The above moments were calculated by generating the 
(4!)2= 576 possible patterns for 8 points where the first 4 points are all less than the last 
four points.  Let t be the number of shifts.  When t shifts occur: 
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Shifts increase both E{S} and Var{S}.  To see what effect this has on the critical values, 
take E{S} ± 2 SD{S} as an approximate critical values.  Both upper and lower critical 
values increase as t increases.  Figure 11 shows the percentage increase in these 
approximate critical values as t ranges from 0% to 10% of n.  When t is 5% of n, i.e. a 
change occurs once every 20 points, the critical values increase only 5%. 
 

0

2

4

6

8

10

0 2 4 6 8 10

t (as percentage of n)

   
   

   
 P

er
ce

nt
 In

cr
ea

se
 o

f  
   

   
   

   
   

   
   

   
   

   
  

   
   

   
Cr

iti
ca

l V
al

ue
s

Upper Critical Value
Lower Critical Value

 
 

Figure 11:  Approximate Percent Increase in Critical Values As t Increases 
 
Since the number of changes is not known, one cannot exactly determine the distribution 
of S.  However, by assuming an upper bound on the number of changes, one can bound 
its distribution.  It would seem reasonable to expect no more than one change per twenty 
points (t ≤ n/20).  A lower critical value is then calculated based on t=0 changes while the 
upper critical value is based on t=n/20 changes. 
 
If the Pi where uncorrelated, S would follow the binomial distribution.  Since the 
correlations are small, one would expect the binomial distribution to provide a close 
approximation.  The binomial distribution B(x|nb,pb) has parameters nb and pb.  It has a 
mean of nbpb and variance nbpb(1-pb).  Setting E{S} = nbpb and Var{S} = nbpb(1-pb) and 
solving for nb and pb gives: 
 

 ( )2tn30
31t14n14

}S{E
}S{Var1pb −+

−+
=−=  (18) 

 

 ( )
31t14n14

2tn10
p3

2tn
p

}S{En
2

bb
b −+

−+
=

−+
==  (19) 
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Since nb may not be an integer as required by the binomial distribution, the more general 
incomplete Beta function, Ip(a,b), will be used.  Assuming t changes, the upper and lower 
significance levels for S can be approximated by: 
 
 ( ) ( )Sn,1S1p,n|SB bpbblower b

−+Ι−=≈α  (20) 
 
 ( ) ( )1Sn,Sp,n|1SB1 bpbbupper b

+−Ι=−−≈α  (21) 
 
Equation 1 was obtained from Equation 20 by substituting Equations 18 and 19 and 
setting t=0.  Equation 2 was derived from Equation 21 by substituting Equations 18 and 
19 and setting t=n/20.  Equation 5 was obtained from Equation 20 by substituting 
Equations 13 and 16 and setting t=0.  Equation 6 was derived from Equation 21 by 
substituting Equations 13 and 16 and setting t=n/20.  Simulations indicate that Equations 
20 and 21 are accurate to within 2% of the true value for 0.01≤α≤0.1 and n≥10. 
 
A second less accurate estimate can be obtained by approximating the distribution of S 
using the normal distribution with continuity correction.  This results in Equations 22 and 
23.  Equation 3 was derived from Equation 22 by substituting Equations 16 and 17 and 
setting t=0.  Equation 4 was derived from Equation 23 by substituting Equations 16 and 
17 and setting t=n/20.  Equation 7 was derived from Equation 22 by substituting 
Equations 13 and 16 and setting t=0.  Equation 8 was derived from Equation 23 by 
substituting Equations 13 and 16 and setting t=n/20.  These approximations should only 
be used when n≥100. 
 

 








 −+
Φ≈α

}S{Var
}S{E5.0S

lower  (22) 

 

 








 −−
Φ−≈α

}S{Var
}S{E5.0S1upper  (23) 

 
 
References 
 
Box, George E. P. and Jenkins, Gwilym (1976).  Time Series Analysis: Forecasting and 
Control, Holden-Day, San Francisco, California. 
 
Taylor, Wayne (2000).  Change-Point Analyzer 2.0 software package, Taylor Enterprises, 
Libertyville, Illinois.  WEB: http://www.variation.com/cpa 
 
 
Key Words:  Mean-Shift, Autoregression, Change-Point Analysis, Control Chart, Time 
Series 

https://variation.com/
https://www.variation.com/cpa

	Introduction
	The Mean-Shift Model
	The First Order Autoregressive Model
	The Pattern Test
	Applications of the Pattern Test
	Handling Ties
	Conclusion
	Appendix A
	References

