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Robustness is a key strategy for achieving high quality - low cost products and processes.  Three different 

approaches to robust design are commonly used: the inner/outer array approach advocated by Taguchi, the 
dual response approach using response surfaces and the tolerance analysis approach, which also uses 
response surfaces.  Each of these approaches will be explained.  The three approaches will then be contrasted. 

The three approaches differ as to how the studies are run.  Requirements for using the different 
approaches will be compared.  In robust design, the objective is to estimate the effect that the targets of the 
input variables have on the variation of the output and to select the set of targets that minimize the variation 
while achieving the desired average.  The three approaches differ as to the precision and accuracy of the 
resulting estimates.  The accuracy and precision of the different approaches will be compared under a variety 
of circumstances, including study conditions that are not representative of manufacturing conditions and when 
some sources of variation are not included in the study. 

All three approaches have strengths and weaknesses.  No approach can be said to be universally superior.  
However, these comparisons suggest that, in most cases, the tolerance analysis approach is the best approach 
to use.  The major weakness of the tolerance analysis approach is that it only estimates the variation caused by 
the inputs included in the study.  It ignores other sources of variation.  This weakness can be overcome using a 
combination of tolerance analysis and dual-response approaches. 
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INTRODUCTION 
For many products and processes, the variation of the 

output or response variables is affected by the targets 
selected for the input variables.  For a heat seal machine, 
adjusting inputs such as temperature and dwell time can 
affect the amount that the output seal strength varies.  For 
a pump, adjusting inputs like stroke length and motor 
speed can likewise affect the amount that the output flow 
rate varies.  When selecting targets for input variables, 
their effects on the outputs' variation should be 
considered in addition to their effects on the outputs' 
average.  This results in what is called a robust design. 

There are three common approaches to robust 
design: (1) the dual response approach using response 
surface studies, (2) the inner/outer array approach 
advocated by Taguchi and (3) the tolerance analysis 
approach also using response surface studies.  Each 
approach is explained.  There are important differences 
between these three approaches in terms of their 
requirements and the results obtained.  The requirements 
and the results are compared to help identify when each 
approach should be used. 

A SIMPLE EXAMPLE 
The following example will be used to compare the 

three approaches.  Suppose there is a single input variable 
X and a single output variable Y and that: 
 Y = -6 + 1.2 X - 0.04 X2 (1) 

A plot of the effect of X on Y is shown in Figure 1. 
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Figure 1:  Effect of X on Y 

Further suppose that X varies around its selected 
target with a standard deviation of σX = 0.5.  We can 
select any target or average for X over the range of 10 to 
20.  We want to identify the target for X that minimizes 
the amount that Y varies. 
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Figure 2 shows why the target of X effects the 
variation of Y.  When the target of X is 10, more 
variation is transmitted from X to Y due to steeper slope.  
This makes Y more sensitive to the variation of X.  When 
the target is 15, the slope is less making Y less sensitive 
or more robust to the variation of X. 
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Figure 2:  Achieving Robustness 
 

EQUATION KNOWN 
If the equation relating X and Y is known, an exact 

solution to the problem can be obtained.  This is 
accomplished by deriving an equation for the standard 
deviation of Y and then finding the target of X that 
minimizes this equation.  The equation for the standard 
deviation can be obtained using tolerance analysis.  
Details can be found in Taylor (1991), Cox (1986), Evans 
(1975) and many other places.  These methods are also 
referred to as propagation of error and variation 
transmission analysis. 

Let tX represent the selected target or average of X.  
Using tolerance analysis, the following expression for the 
standard deviation of Y can be obtained: 
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Figure 3 shows a plot of the standard deviation of Y.  It is 
minimized when tX = 15.  The minimum standard 
deviation is σY ( . ) .15 0 0 0141= . 
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Figure 3:  Plot of σY(tX) 

Exact solutions or close approximations can be 
obtained if the equation relating Y and X is known.  
However, in many problems, the equation relating the 
inputs and outputs is not known.  It must be estimated by 
collecting and analyzing data.  Assuming the equation is 
unknown, we will work this problem using each of the 
three approaches.  Once the three approaches are 
understood, the remainder of the article will compare the 
results obtained by the three methods under a variety of 
situations.  While this problem is an over simplification 
of real world problems, the insight gained will prepare us 
for dealing with more complicated problems. 

While there are many problems where the equation is 
unknown, there are an equal number of problems where 
the equation is known.  Engineering and science 
textbooks are full of such equations.  When the equation 
is known, none of the 3 approaches examined in this 
article should be used.  Instead a tolerance analysis  
should be performed to obtain an exact solution.  All 
three approaches involve approximating the actual 
equation with a low-order polynomial which is an 
unnecessary step that can result in the loss of  
information.  See Lawson and Madrigal (1994), Taylor 
(1996) and Bisgaard and Ankenman (1996). 

APPROACH 1:   
DUAL RESPONSE APPROACH 

The dual response approach involves running a 
response surface study where both the average and 
standard deviation of the outputs are analyzed.  The 
resulting equations are then used to minimize the 
variation while achieving a desirable average.  Further 
information can be found in Vining and Myers (1990), 
and Myers, Khuri and Vining (1992). 

To solve the example problem, three trials were run 
at equally spaced targets.  Twelve observations were 
made per trial.  Table 1 contains the data.  This data was 
created by generating values for X according to the 
normal distribution and plugging these into Equation 1. 

Table 1:  Data for Dual Response Approach 

Target Values of Y 
 

10 
 2.34 2.03 2.02 2.21
 2.20 1.67 1.99 2.17
 2.09 1.87 2.21 1.39 

 
15 

 3.00 3.00 3.00 2.97
 2.98 3.00 2.99 3.00
 3.00 2.99 3.00 3.00 

 
20 

 1.72 2.19 2.04 1.93
 2.03 1.80 2.13 1.65
 1.94 1.87 1.90 2.09 
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Once the data was collected, the average and standard 
deviation for each target was calculated.  The resulting 
values are shown in Table 2. 

Table 2:  Estimates of the Average and  
     Standard Deviation of Y 

Target Average Std. Dev. 

10 2.0158333 0.2657907 

15 2.9941667 0.009962 

20 1.9408333 0.1645632 

Quadratic polynomials were then fit to these values using 
regression analysis.  The coefficients of an equation of 
the form b0 + b1 tX + b2 tX2 are estimated by: 
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X is the design matrix shown below, where t1 = 10, t2 = 
15 and t3 = 20. 

 
















=

















=
400201
225151
100101

tt1
tt1
tt1

2
33

2
22

2
11

X  (4) 

Y is the data matrix.  For the standard deviation, the log 
of the standard deviation is generally fit instead.  The 
resulting equation can be back-transformed to obtain an 
equation for the standard deviation.  When fitting the log 
of the standard deviation, Y is: 
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The resulting equations for the average and standard 
deviation of Y are: 

 2
XXXY t0406333.0t2115.103583.6)t(ˆ −+−=µ  (6) 
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Most problems involve several inputs.  In many 
cases, those inputs that have the largest effect on the 
variation are targeted to minimize it.  The remaining 
inputs are then targeted to achieve the desired average.  
In other cases, objective functions (including signal-to-
noise ratios) are optimized to obtain the best combination 
of the average and variation.  To simplify our 
comparisons, we will ignore the equation for the average 
and assume that the objective is to simply minimize the 
variation.  This requires finding the value of tX that 
minimizes Equation 7 over the region of study.  An 
estimate of the target minimizing the variation, denoted 

mint̂  can be obtained by taking the partial derivative of 
Equation 7 with respect to tX, setting it to zero and then 
solving for tX.  This results in: 

 197.15
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The above equation yields the minimum so long as the 
result is in the region of study and b2 is positive, i.e., the 
point is a minimum and not a maximum.  For both these 
exceptions, the minimum occurs at one of the edges of 
the study region.  At the minimum target, the predicted 
variation is 0099.0)t̂(ˆ minY =σ  

APPROACH 2: 
TAGUCHI APPROACH 

The Taguchi approach differs from the dual response 
approach in the way the variation is estimated at the three 
selected targets.  The Taguchi approach uses a noise 
(outer) array to simulate the variation of the inputs.  To 
solve the example problem, 4 samples were collected at 
each of the targets: 9.5, 10.0, 10.5, 14.5, 15.0, 15.5, 19.5, 
20.0 and 20.5.  This keeps the total number of samples 
the same.  Table 3 contains the data.  This approach is 
also referred to as the inner/outer array approach.  These 
targets represent all possible combinations of the design 
(inner) array X and noise (outer) array N, shown below.  
An estimate of σX is required to design the study.   
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Table 3:  Data for Taguchi Approach 

Target Values of Y 

9.5  2.09 1.99 1.82 1.67 

10.0  2.26 1.64 1.98 1.89 

10.5  2.23 2.47 1.93 2.30 

14.5  2.99 2.99 2.99 2.95 

15.0  2.98 2.98 2.98 2.96 

15.5  3.00 2.97 3.00 2.96 

19.5  2.24 2.24 2.05 2.33 

20.0  2.10 2.04 1.80 1.90 

20.5  1.74 1.88 2.15 1.65 
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Once the data has been collected, the average at each 
target is calculated.  The resulting values are shown in 
Table 4. 

Table 4:  Cell Averages 

  Noise (Outer) Array 
  -0.5 +0 +0.5 

Design 
(Inner)
Array 

10 1.8925 1.9425 2.2325 

15 2.9800 2.9750 2.9825 

20 2.2150 1.9600 1.8550 

Estimates of the average and standard deviation of Y 
at each of the design array targets are obtained by 
calculating the average and standard deviation of the cell 
averages.  The resulting estimates are shown in Table 5.  
When the design array target is 10, data is collected at 
9.5, 10 and 10.5.  The average of these three points is 10 
and the standard deviation is σX = 0.5.  Thus, the design 
array results in a systematic sample that mimics the 
variation of the input X.  Taking the average and standard 
deviation of the cell averages then estimates the behavior 
of the output Y. 

Table 5:  Estimates of the Average and  
      Standard Deviation of Y 

Target Average Std. Dev. 
10 2.0225 0.1835756 

15 2.9792 0.0038189 

20 2.0100 0.185135 

Quadratic polynomials are then fit to these results 
using the same equations as before (3-5).  Again, the log 
of the standard deviation is analyzed.  The resulting 
equations for the average and standard deviation of Y are: 

 2
XXXY t038518.0t15429.16686.5)t(ˆ −+−=µ  (10) 

 ( )2
XX t155036.0t65023.43036.29

XY e)t(ˆ +−=σ  (11) 

The value of tX that minimizes Equation 11 over the 
region of study is: 

 997.14
b̂2
b̂

t̂
2

1
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−
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At the minimum target, the predicted variation is 
0038.0)t̂(ˆ minY =σ .  A good introduction to the Taguchi 

approach is Taguchi (1986). 

APPROACH 3: 
TOLERANCE ANALYSIS APPROACH 

The tolerance analysis approach starts with a 
response surface study on the output's average.  A 
tolerance analysis is then performed using the predicted 
equation for the average.  Exactly the same data is 
required as for the dual response approach.  Everything 
proceeds as before up to the point that the equation for 
the average is obtained.  The tolerance analysis approach 
only uses the equation for the average.  The equation for 
the standard deviation will be ignored.  Further details 
and examples can be found in Taylor (1991). 

For the example problem, the predicted equation for 
the average was given in Equation 6.  A tolerance 
analysis is then performed on this equation.  This results 
in the following equation:  

( )
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XY
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An estimate of σX is required to use this equation to 
complete the analysis.  This equation serves the same 
purpose as Equation 7 for the dual response approach and 
Equation 11 for the Taguchi approach.  The value of tX 
that minimizes Equation 13 over the study region is: 

 908.14
0812666.0

2115.1t̂ min =
−

−
=  (14) 

At the minimum target, the predicted variation is 
0144.0)t̂(ˆ minY =σ .  Since the same data is required for 

both the dual response approach and the tolerance 
analysis approach, both analyses could be performed and 
the results compared.  This might provide better results 
and insight than either method on its own. 

COMPARISON OF RESULTS  
FOR EXAMPLE PROBLEM 

All three approaches estimate the effect of the input's 
target on the output's variation (Equations 7, 11 and 13).  
However, they use different strategies for obtaining these 
estimates.  The dual response approach directly observes 
the variation.  Taguchi's approach simulates the variation 
using a noise array.  The tolerance analysis approach 
predicts the variation based on an equation for the 
average.  There are procedural differences between the 
three approaches.  Both the Taguchi and tolerance 
analysis approaches require an estimate of σX.  This 
estimate is used to design the Taguchi study.  This limits 
the analysis to the value used to design the study.  The 
tolerance analysis approach does not use the estimate of 
σX until the analysis phase.  This allows alternate values 
to be explored as is the case when one is considering the 
tightening of certain tolerances.  The dual response 
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approach does not require an estimate of σX.  Instead, it 
directly observes the variation of Y.  This requires that 
the variation present during the study period be 
representative of full-scale production.  This can be 
difficult to ensure and requires special safeguards while 
the data is being collected.  Another procedural 
difference is that the Taguchi approach requires a larger 
number of adjustments and finer adjustments which may 
be difficult to make and which increase the cost of the 
study. 

Besides such procedural differences, their are also 
differences in the accuracy and precision of the resulting 
estimates.  To compare the resulting estimates, 100,000 
sets of data were generated and analyzed using each 
approach.  Figure 4 shows the results of estimating 

)t(ˆ Yσ .  The center line represents the average of )t(ˆ Yσ  
and the band represents ±2 standard deviations.  The true 
value is also shown as a dotted line.  The tolerance 
analysis approach has the narrowest band around the true 
value indicating that it provides the greatest accuracy and 
precision.  Why the difference in curve shapes?  Equation 
1, the true equation for Y, is a quadratic polynomial.  
However, Equation 2, the true equation for the standard 
deviation, is not a quadratic polynomial nor can it be 
closely approximated by one.  The dual response 
approach and Taguchi approach attempt to fit a quadratic 
polynomial to the standard deviation.  As a result, there is 
significant lack of fit in between the three fitted points.  
The tolerance analysis approach fits a quadratic 
polynomial to the average which results in an accurate fit.  
This example illustrates that equations for standard 

deviations tend to be more complex than equations for 
the average.  In general, the order of the polynomial 
required to fit the standard deviation is double that for the 
average.  Thus if a 2nd-order polynomial fits the average 
well, a 4th-order polynomial may be required for the 
standard deviation.  This is a result of the fact that the 
standard deviation of Y depends on the E{Y2}.  All three 
methods, will be effected by lack of fit due to incorrect 
models.  However, the tolerance analysis approach will 
generally be effected less since it fits the average instead 
of the variation. 

For each of the three approaches, Table 6 compares 
the estimates of both tmin and the variation at tmin.  All 
values are reported to the number of digits estimated to 
be accurate.  The true values are shown at the top of the 
table.  All three approaches provide an accurate 
(unbiased) estimate of tmin.  However, the tolerance 
analysis approach is more precise (smaller standard 
deviation) at estimating tmin than the other two 
approaches.  The dual response approach is second.  Both 
the dual response approach and Taguchi approach 
underestimate the variation at tmin.  The tolerance analysis 
approach provides an accurate estimate that is ten times 
more precise than the other two approaches. 

 

Table 6:  Estimates of Minimum Target and Standard Deviation at Minimum Target 
For Example Problem 

Approach tmin = 15 σY(tmin) = 0.0141 

 Average Std. Dev. Average Std. Dev. 
Dual Response 15.00 0.17 0.0127 0.0062 

Taguchi 15.00 0.26 0.0104 0.0063 

Tolerance Analysis 15.00 0.112 0.0141 0.0006 

    Dual Response Approach                        Taguchi Approach                         Tolerance Approach 
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Figure 4:  Estimated Standard Deviation of Y For Example Problem 
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STUDY CONDITIONS  

NOT REPRESENTATIVE  
OF MANUFACTURING 

In the example problem, it was assumed that the 
variation of X during the study was representative of its 
variation during actual manufacturing.  This is frequently 
not the case.  It is not uncommon for the variation during 
the study to be less than what will be experienced under 
more extended periods of production.  Frequently, limited 
material is available, the process is better controlled, and 
components of variation, such as roll-to-roll variation and 
tank-to-tank variation, are missed.  To determine what 
effect running the study under conditions not 
representative of manufacturing has on the results, 
100,000 new datasets were generated and analyzed.  A 
value of σX = 0.25 was used to generate data representing 
study conditions.  It is still assumed that σX  = 0.5 under 
long-term manufacturing so that the correct answers are 
the same as before.  Further, a value of σX  = 0.5 was still 
used to design the Taguchi study and to perform the 
tolerance analysis. 

The results are shown in Figure 5 and Table 7.  Not 
too surprisingly, the dual response approach ends up 
badly underestimating the variation of Y across the entire 
curve.  However, the ability to estimate tmin does not 
suffer.  In fact, it improves slightly.  This might not be 
the case if other inputs were also included in the study.  
Suppose a study was run where the input contributing the 
most variation only varied over a narrow range while a 

less important input varied over its full range.  The dual 
response approach could end up making the process 
robust to the second input at the expense of making it 
more sensitive to the first.  While the selected targets 
might optimize the process for the study conditions, they 
might perform poorly in manufacturing.  When using the 
dual response approach, study conditions should be as 
representative of long term manufacturing as 
possible.  This can significantly add to the cost of the 
study. 

Both the Taguchi and tolerance analysis approaches 
benefit from the reduced variation during the study.  In 
both case the standard deviation of the tmin estimate is 
reduced by at least 50% compared to Table 6.   When 
using the Taguchi and tolerance analysis approaches, 
variation during the study should be kept to a 
minimum.  The tolerance analysis approach maintains its 
advantage over the other two approaches with respect to 
precision of the tmin estimate.  Both the dual response 
approach and Taguchi approach underestimate the 
variation at tmin.  Again the tolerance analysis approach 
provides an unbiased estimate that is ten times more 
precise than the other two approaches. 

Table 7:  Estimates of Minimum Target and Standard Deviation at Minimum Target  
When Study Conditions Are Not Representative of Manufacturing 

Approach tmin = 15 σY(tmin) = 0.0141 

 Average Std. Dev. Average Std. Dev. 
Dual Response 15.00 0.118 0.0032 0.0015 

Taguchi 15.00 0.096 0.0068 0.0027 

Tolerance Analysis 15.00 0.051 0.0141 0.0003 

    Dual Response Approach                     Taguchi Approach                            Tolerance Approach 
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Figure 5:  Estimated Standard Deviation of Y For Three Approaches  

                                       When Study Conditions Are Not Representative of Manufacturing 
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MEASUREMENT ERROR AND  
OTHER VARIATION 

In the example problem, all variation is due to X.  
There are no other sources of variation, including 
measurement.  In this section, we will add additional 
variation to our model and repeat the comparison.  
Suppose we add to Equation 1 a second input E 
representing the other sources of variation.  The new 
model becomes: 

 Y = -6 + 1.2 X - 0.04 X2 + E (15) 

Assume E has average µE = 0 and standard deviation σE 
= 0.2.  Then the true formula for the standard deviation 
changes to: 

 ( )
2
E

4
X

2
X

2
X

XY
0032.0

t08.02.1
)t(

σ+σ+

σ−
=σ  (16) 

Figure 6 shows a plot of the standard deviation of Y.  It is 
still minimized when tX = 15.  The resulting minimum 
standard deviation changes to 0.2005. 

To compare the resulting estimates, another 100,000 sets 
of data were generated and analyzed using each 
approach.  As in the previous section, a value of σX = 
0.25 was used to generate data.  The precision and 
accuracy of the estimated variation of Y are shown in 
Figure 7.  The tolerance analysis approach has the 
narrowest band, indicating that it provides the greatest 
precision.  However, this approach badly underestimates 

Y's variation.  This is because it only estimates the 
variation resulting from X.  It ignores variation from 
other sources.  The Taguchi approach also underestimates 
Y's variation for the same reason, although not nearly as 
badly.  The dual response approach continues to 
underestimate the variation due to study conditions not 
representative of manufacturing. 

The reason the tolerance analysis approach 
underestimates Y's variation is that it ignores the 
measurement variation and the variation resulting from 
variables not included in the study.  This can be fixed by 
being sure to include all possible sources of variation in 
the study.  It may also be necessary to adjust the 
estimated variation to account for the measurement 
variation.  Suppose Eσ̂  is an estimate of the measurement 
variation.  One could then estimates Y's variation as 
follows: 

Table 8:  Estimates of Minimum Target and Standard Deviation at Minimum Target  
When Measurement and Other Variation 

Approach tmin = 15 σY(tmin) = 0.2005   

 Average Std. Dev. Average Std. Dev. 
Dual Response 15.00 3.54 0.170 0.0313 

Taguchi 15.00 1.82 0.0820 0.0413 

Tolerance Analysis 15.00 0.115 0.0141 0.0010 

Adjusted Tol. Anal. 15.00 0.115 0.2005 0.0000 

        Dual Response Approach        Taguchi Approach          Tolerance Approach            Adjusted Tol. Anal. 
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Figure 7:  Estimated Standard Deviation of Y When Measurement and Other Variation 
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Figure 6:  Plot of σY(tX) When Other Variation 
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( ) ( ) 2
EX

2
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AdjustedY ˆtˆtˆ σ+σ=σ −−
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Assuming 2.0ˆ E =σ , the adjusted results are also shown 
in Figure 7.  This results in a highly accurate and precise 
estimate of Y's variation.  A similar adjustment can be 
made for the Taguchi approach. 

Table 8 shows the average and standard deviation of 
the resulting estimates of tmin.  The standard deviation of 
all three methods increased from the previous section 
(Table 7).  The presence of additional variation only 
makes it more difficult to estimate tmin.  However, the 
standard deviation of the tolerance analysis approach 
only increases 30% while the other two approaches 
increase 2 to 3 fold.  With variation from other sources 
present, the tolerance analysis approach has a standard 
deviation of 1/15 that of the Taguchi approach and 1/30 
that of the dual response approach.  This confirms what 
the author has experienced in practice, that the tolerance 
analysis approach is able to repeatedly discover effects 
missed by the other two approaches. 

Table 8 also indicates that all three methods 
underestimate the minimum standard deviation.  The 
tolerance analysis approach is worse.  However, by 
adjusting for measurement error and being sure to include 
all possible sources of variation, the tolerance analysis 
approach gives amazingly accurate and precise estimates. 

SUMMARY 
All three approaches to robustness have been highly 

successful.  Numerous case studies attest to this fact.  
Any method of using designed experiments and 
addressing robustness is better than none.  At issue is 
whether one approach offers significantly greater benefits 
than the others and can be said to be the best 
demonstrated practice. 

Robustness applies to a variety of products and 
processes including electronic hardware, plastics 
manufacturing, chemical processes and metal processing.  
Such applications vary greatly in the cost of collecting 
data, type of objectives, and so on.  There may not be a 
single method that is best for all these applications.  What 
has worked well in one industry may not be the best 
approach in another.  This article attempts to compare the 
three approaches under a variety of circumstances to help 
identify differences in the performance between the three 
approaches.  In addition, there are procedural differences 
that must be considered.  These differences are 
summarized in Table 9. 

The tolerance analysis approach is frequently the 
best approach.  It far outperforms the other approaches in 
terms of accuracy and precision of its estimates.  It is also 
is the least expensive approach.  Further, it has the 
enormous advantage that the variation or tolerances for 
the input do not have to be specified until the analysis 
phase, allowing alternate designs or conditions to be 
analyzed as well.  Robustness alone might not be enough 
to achieve your objectives.  Tightening of some 
tolerances may be necessary.  The tolerance analysis 
approach allows alternate tolerances to be explored and 
optimized without requiring further collection of data. 

The single weakness of the tolerance analysis 
approach is that it requires that all important sources of 
variation be included in the study.  Special care should be 
taken to consider all variables that might affect the 
product or process.  This generally requires running 
screening experiments or fractional factorial designs first 
on a large number of inputs and then augmenting it into a 
response surface study on the key inputs. 

If one is studying a small number of the most 
important inputs, the dual response approach should be 
used.  It is the only approach that achieves robustness 
against sources of variation not formally included in the 
study.  Because of the poor precision of this approach, it 
would be best to take 50 to 100 samples per trial.  It 
should be routine practice to analyze the standard 
deviation anytime the average is analyzed.  While the 
dual response approach may miss some inputs due to its 
poor precision, inputs that it finds can lead to significant 
improvements without the need for additional data. 

Since the dual response approach and tolerance 
analysis approach can use the same data, the two 
approaches can be used together.  Such studies should be 
run under conditions as representative of manufacturing 
as possible.  While this is not the ideal conditions for the 
tolerance analysis approach, the tolerance analysis 
approach still has good precision.  This allows the 
predicted performance from the tolerance analysis 
approach to be compared to the observed variation from 
the dual response approach and serves as a check and 
balance. 

Finally, no method is foolproof.  None of the three 
methods works when the major source of variation has 
not yet been identified as an input and thus is not 
included in the study and this input does not vary much 
during the period the study is performed.  An example 
might be a seasonal variable not considered. 
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Table 9:  Comparison of Three Approaches to Robust Design 

 Dual Response Taguchi Tolerance Analysis 

Method of Estimating 
Variation 

Direct Observation Uses noise array to simulate 
variation of inputs 

Predicts variation using 
equation for average 

Procedural 
Requirements 

Requires study conditions to 
be representative of 
manufacturing 

Requires multiple 
observations per trial 

Works best when the 
variation present during the 
study is minimized 

Requires numerous fine 
adjustments to be made 

Requires estimates of 
variation of inputs to design 
study 

Can be run with one 
observation per cell 

Works best when the 
variation present during the 
study is minimized 

Requires estimates of 
variation of inputs to analyze 
study 

Can be run with 1 
observation per trial 

Cost of Running 
Experiment 

Cost are increased due to 
extra precautions to insure 
study conditions are 
representative of 
manufacturing 

Costs are increased due to 
need to make numerous fine 
adjustments 

Lowest cost approach 

Estimated Variation 

Under estimates variation if 
study conditions are not 
representative of 
manufacturing. 

Least precise method 

Under estimates variation if 
important sources of 
variation are not included in 
the study 

Low precision but better than 
dual response approach 

Under estimates variation if 
important sources of 
variation are not included in 
the study 

Including all sources of 
variation and possible 
adjusting for measurement 
error results in accurate 
predictions of the variation 

High precision 

Target Minimizing 
Variation 

If study conditions are not 
representative of 
manufacturing, will optimize 
for study conditions and may 
fail in manufacturing  

Least precise method.  
However this lack of 
precision can be partially 
overcome by taking larger 
number of samples per trial.  
Sample sizes of 50-100 are 
more appropriate 

If an important source of 
variation is not included, will 
optimize only for sources of 
variation included in the 
study and may fail in 
manufacturing 

Low precision but better than 
the dual response approach 

If an important source of 
variation is not included, will 
optimize only for sources of 
variation included in the 
study and may fail in 
manufacturing 

High precision.  Standard 
deviation 1/15 that of the 
Taguchi approach and 1/30 
that of the dual response 
approach 

Other 
Only method that can 
achieve robustness against 
unidentified source of 
variation 

 Only method that can 
explore alternate tolerances 
for inputs without requiring 
additional data 
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Most debates about Taguchi Methods center around 
the dual response approach versus Taguchi.  While care 
should be taken in concluding too much from these 
limited examples, the results presented indicate that a 
third lesser known approach called the tolerance analysis 
approach is in many if not most cases the best approach 
to use.  Even better results can be obtained by combining 
the dual response and tolerance analysis approaches.  
Finally, all three of these approaches are only appropriate 
when the equation relating the inputs and the output are 
unknown.  If the equation is known, none of these 
approaches should be used.  Instead exact solutions can 
be obtained. 
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